CBCS SCHEME

USN						
USN	e.					

Third Semester B.E. Degree Examination, Jan./Feb. 2021 **Computer Organization**

Max. Marks: 80 Time: 3 hrs.

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Explain with a neat diagram, the different functional units of a digital computer. 1
 - b. Explain the basic operational concepts between the processor and memory, with a neat diagram. (08 Marks)

- Explain the following: i) Byte addressability ii) Big – endian assignment 2
 - iv) Word alignment of a machine. iii) Little – endian assignment (08 Marks)
 - b. Registers R₁ and R₂ of a computer contain the decimal value 1200 and 4600, what is the effective address of the source operand in each of the following instruction:

[R₁, R₂ and R₅ are registers]

Load $20(R_1)$, R_5

Move #3000, R₅

Store R_5 , $30(R_1, R_2)$ Add $-(R_2)$, R_5 .

(08 Marks)

Module-2

- What is Interrupt? With example, explain the concept of interrupts. (08 Marks)
 - What are the different methods of DMA transfer? Explain any one

(08 Marks)

- Why is bus arbitration required? Explain with block diagram, bus arbitration using Daisy -(08 Marks) Chain.
 - Explain Serial port and a Serial interface.

(08 Marks)

Module-3

- Define and explain the following: i) Memory access time ii) Memory cycle time iii) Random Access Memory (RAM) iv) Read Only Memory (ROM). (08 Marks) (08 Marks)
 - b. Discuss the Internal organization of a 2M × 8 asynchronous DRAM chip.

- Draw a neat block diagram of memory hierarchy in a contemporary computer system. Also indicate relative variation of size, speed and cost per bit, in the hierarchy. (08 Marks)
 - b. Explain Associative mapping technique and Set Associative mapping technique, with a neat (08 Marks) diagram.

Module-4

Design a 4 – bit binary adder / subtractor and explain its functions. 7

(08 Marks)

b. Explain with diagram, Look – ahead Carry generator.

(08 Marks)

OR

8 a. Perform Multiplication for (-13) and (+09) using Booth's Algorithm. (08 Marks)
b. Perform Multiplication of (+13) and (-6) using Bit Pair recoding method. (08 Marks)

Module-5

9 a. With a diagram, explain typical single bus processor data path.

b. Write the control sequence for an unconditional branch instruction.

(08 Marks)

OR

a. Explain the 3 - bus organization of the data path with a neat diagram and write the control sequence for the instruction ADD R4, R5, R6 for the 3 - bus organization. (08 Marks)
b. Draw and explain typical hard wired control unit. (08 Marks)